The mammalian neocortex new pyramidal neuron: a new conception

نویسنده

  • Miguel Marín-Padilla
چکیده

The new cerebral cortex (neocortex) and the new type of pyramidal neuron are mammalian innovations that have evolved for operating their increasing motor capabilities while essentially using analogous anatomical and neural makeups. The human neocortex starts to develop in 6-week-old embryos with the establishment of a primordial cortical organization, which resembles the primitive cortices of amphibian and reptiles. From the 8th to the 15th week of age, new pyramidal neurons, of ependymal origin, are progressively incorporated within this primordial cortex forming a cellular plate that divides its components into those above it (neocortex first layer) and those below it (neocortex subplate zone). From the 16th week of age to birth and postnatally, the new pyramidal neurons continue to elongate functionally their apical dendrite by adding synaptic membrane to incorporate the needed sensory information for operating its developing motor activities. The new pyramidal neuron' distinguishing feature is the capacity of elongating anatomically and functionally its apical dendrite (its main receptive surface) without losing its original attachment to first layer or the location of its soma and, hence, retaining its essential nature. The number of pyramidal cell functional strata established in the motor cortex increases and reflects each mammalian species motor capabilities: the hedgehog needs two pyramidal cell functional strata to carry out all its motor activities, the mouse 3, cat 4, primates 5 and humans 6. The presence of six pyramidal cell functional strata distinguish the human motor cortex from that of others primates. Homo sapiens represent a new evolutionary stage that have transformed his primate brain for operating his unique motor capabilities, such as speaking, writing, painting, sculpturing and thinking as a premotor activity. Words used in language are the motor expression of thoughts and represent sounds produced by maneuvering the column of expiratory air by coordinated motor quivering as it passes through the larynx, pharynx, mouth, tongue, and lips. Homo sapiens cerebrum has developed new motor centers to communicate mental thoughts (and/or intention) through motor actions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Neocortical neuron morphology in Afrotheria: comparing the rock hyrax with the African elephant.

The mammalian neocortex contains a great variety of neuronal types. In particular, recent studies have shown substantial morphological diversity among spiny projecting neurons in species that diverged close to the base of the mammalian radiation (e.g., monotremes, afrotherians, and xenarthrans). Here, we used a Golgi technique to examine different neuronal morphologies in an afrotherian species...

متن کامل

P15: Hippocampus-Neocortical Communication in Learning

The hippocampus is located in the medial temporal lobe and is a part of the forebrain. It plays a critical role in formation of declared memories. The hippocampus is banana­-shaped and communicates with all parts of neocortex. Reptiles and birds have structures like hippocampus that potentially serve as navigation functions. During the mammalian evolution, the neocortex has a large expansio...

متن کامل

Dev108043 3370..3377

The formation of a laminar structure such as the mammalian neocortex relies on the coordinated migration of different subtypes of excitatory pyramidal neurons in specific layers. Cyclin-dependent kinase 5 (Cdk5) is a master regulator of pyramidal neuron migration. Recently, we have shown that Cdk5 binds to the serotonin 6 receptor (5-HT6R), a G protein-coupled receptor (GPCR). Here, we investig...

متن کامل

Dev108043 1..8

The formation of a laminar structure such as the mammalian neocortex relies on the coordinated migration of different subtypes of excitatory pyramidal neurons in specific layers. Cyclin-dependent kinase 5 (Cdk5) is a master regulator of pyramidal neuron migration. Recently, we have shown that Cdk5 binds to the serotonin 6 receptor (5-HT6R), a G protein-coupled receptor (GPCR). Here, we investig...

متن کامل

Neurogenesis of corticospinal motor neurons extending spinal projections in adult mice.

The adult mammalian CNS shows a very limited capacity to regenerate after injury. However, endogenous precursors, or stem cells, provide a potential source of new neurons in the adult brain. Here, we induce the birth of new corticospinal motor neurons (CSMN), the CNS neurons that die in motor neuron degenerative diseases, including amyotrophic lateral sclerosis, and that cause loss of motor fun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2013